CS655 Soil Water Content Reflectometer 12 cm

Overview

The CS655 is a multiparameter smart sensor that uses innovative techniques to monitor soil volumetric-water content, bulk electrical conductivity, and temperature. It outputs an SDI-12 signal that many of our dataloggers can measure. It has shorter rods than the CS650, for use in problem soils.

This product is supplied with a 3 m cable as standard, other lengths available to order.

Read More

Benefits and Features

  • Larger sample volume reduces error
  • Measurement corrected for effects of soil texture and electrical conductivity
  • Estimates soil-water content for a wide range of mineral soils
  • Versatile sensor—measures dielectric permittivity, bulk electrical conductivity (EC), and soil temperature

Images

Technical Description

The CS655 consists of two 12-cm-long stainless steel rods connected to a printed circuit board. The circuit board is encapsulated in epoxy and a shielded cable is attached to the circuit board for data logger connection.

The CS655 measures propagation time, signal attenuation, and temperature. Dielectric permittivity, volumetric water content, and bulk electrical conductivity are then derived from these raw values.

Measured signal attenuation is used to correct for the loss effect on reflection detection and thus propagation time measurement. This loss-effect correction allows accurate water content measurements in soils with bulk EC ≤8 dS m-1 without performing a soil-specific calibration.

Soil bulk electrical conductivity is also calculated from the attenuation measurement. A thermistor in thermal contact with a probe rod near the epoxy surface measures temperature. Horizontal installation of the sensor provides accurate soil temperature measurement at the same depth as the water content. Temperature measurement in other orientations will be that of the region near the rod entrance into the epoxy body.

Specifications

Measurements Made Soil electrical conductivity (EC), relative dielectric permittivity, volumetric water content (VWC), soil temperature
Required Equipment Measurement system
Soil Suitability Short rods are easy to install in hard soil. Suitable for soils with higher electrical conductivity.
Rods Not replaceable
Sensors Not interchangeable
Sensing Volume 3600 cm3 (~7.5 cm radius around each probe rod and 4.5 cm beyond the end of the rods)
Electromagnetic CE compliant (Meets EN61326 requirements for protection against electrostatic discharge and surge.)
Operating Temperature Range -50° to +70°C
Sensor Output SDI-12; serial RS-232
Warm-up Time 3 s
Measurement Time 3 ms to measure; 600 ms to complete SDI-12 command
Power Supply Requirements 6 to 18 Vdc (Must be able to supply 45 mA @ 12 Vdc.)
Maximum Cable Length 610 m (2000 ft) combined length for up to 25 sensors connected to the same data logger control port
Rod Spacing 32 mm (1.3 in.)
Ingress Protection Rating IP68
Rod Diameter 3.2 mm (0.13 in.)
Rod Length 120 mm (4.7 in.)
Probe Head Dimensions 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.)
Cable Weight 35 g per m (0.38 oz per ft)
Probe Weight 240 g (8.5 oz) without cable

Current Drain

Active (3 ms)
  • 45 mA typical (@ 12 Vdc)
  • 80 mA (@ 6 Vdc)
  • 35 mA (@ 18 Vdc)
Quiescent 135 µA typical (@ 12 Vdc)

Electrical Conductivity

Range for Solution EC 0 to 8 dS/m
Range for Bulk EC 0 to 8 dS/m
Accuracy ±(5% of reading + 0.05 dS/m)
Precision 0.5% of BEC

Relative Dielectric Permittivity

Range 1 to 81
Accuracy
  • ±(3% of reading + 0.8) from 1 to 40 for solution EC ≤ 8 dS/m
  • ±2 (from 40 to 81 for solution EC ≤ 2.8 dS/m)
Precision < 0.02

Volumetric Water Content

Range 0 to 100% (with M4 command)
Water Content Accuracy
  • ±1% (with soil-specific calibration) where solution EC < 3 dS/m
  • ±3% (typical with factory VWC model) where solution EC < 10 dS/m
Precision < 0.05%

Soil Temperature

Range -50° to +70°C
Resolution 0.001°C
Accuracy
  • ±0.1°C (for typical soil temperatures [0 to 40°C] when probe body is buried in soil)
  • ±0.5°C (for full temperature range)
Precision ±0.02°C

Compatibility

Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.

Dataloggers

Product Compatible Note
CR1000 (retired)
CR1000X
CR200X (retired)
CR216X (retired)
CR300
CR3000
CR310
CR5000 (retired)
CR6
CR800
CR850
CR9000X (retired)

Additional Compatibility Information

RF Considerations

External RF Sources

External RF sources can affect the probe’s operation. Therefore, the probe should be located away from significant sources of RF such as ac power lines and motors.

Interprobe Interference

Multiple CS655 probes can be installed within 4 inches of each other when using the standard data logger SDI-12 “M” command. The SDI-12 “M” command allows only one probe to be enabled at a time.

Optional Installation Tool

CS650G Rod Insertion Guide Tool

The CS650G makes inserting soil-water sensors easier in dense or rocky soils. This tool can be hammered into the soil with force that might damage the sensor if the CS650G was not used. It makes pilot holes into which the rods of the sensors can then be inserted.

FAQs for

Number of FAQs related to CS655: 55

Expand AllCollapse All

  1. Yes. There is surge protection built into the sensor electronics. The sensor survives a surge of 2 kV at 42 ohm line-to-ground on digital I/O and 2 kV at 12 ohm line-to-ground on power. It also survives a surge of 2 kV at 2 ohm line-to-ground on the rods.

    If additional surge protection is required, consider using the SVP100 Surge Voltage Protector DIN Rail with Mounting Hardware

  2. Damage to the CS650 or the CS655 electronics or rods cannot be repaired because these components are potted in epoxy. Cable damage, on the other hand, may possibly be repaired. For more information, refer to the Repair and Calibration page.

  3. Campbell Scientific strongly discourages shortening the sensor’s rods. The electronics in the sensor head have been optimized to work with the 12 cm long rods. Shortening these rods will change the period average. Consequently, the equations in the firmware will become invalid and give inaccurate readings.

  4. No. It is not possible to disable the logical tests in the firmware. If soil conditions cause frequent NAN values, it may be possible to perform a soil-specific calibration that will provide good results.

    If permittivity is reported but the volumetric water content value is NAN, Campbell Scientific recommends a soil-specific calibration that converts permittivity to water content. This will take advantage of the bulk electrical conductivity correction that occurs in the firmware.

    If both permittivity and volumetric water content have NAN values, it may be possible to perform a calibration that converts period average directly to volumetric water content.

    For details on performing a soil-specific calibration, refer to “The Water Content Reflectometer Method for Measuring Volumetric Water Content” section in the CS650/CS655 manual. After a soil-specific equation is determined, it may be programmed into the data logger program or used in a spreadsheet to calculate the soil water content.

  5. The bulk electrical conductivity (EC) measurement is made along the sensor rods, and it is an average reading of EC over that distance at whatever depth the rods are placed.

  6. Probably not. The principle that makes these sensors work is that liquid water has a dielectric permittivity of close to 80, while soil solid particles have a dielectric permittivity of approximately 3 to 6. Because the permittivity of water is over an order of magnitude higher than that of soil solids, water content has a significant impact on the overall bulk dielectric permittivity of the soil. When the soil becomes very dry, that impact is minimized, and it becomes difficult for the sensor to detect small amounts of water. In air dry soil, there is residual water that does not respond to an electric field in the same way as it does when there is enough water to flow among soil pores. Residual water content can range from approximately 0.03 in coarse soils to approximately 0.25 in clay. In the natural environment, water contents below 0.05 indicate that the soil is as dry as it is likely to get. Very small changes in water content will likely cause a change in the sensor period average and permittivity readings, but, to interpret those changes, a very careful calibration using temperature compensation would need to be performed.  

  7. Yes, but the pots would have to be large. The CS650 and CS655 can detect water as far away as 10 cm (4 in.) from the rods. If the pot has a diameter smaller than 20 cm (8 in.), the sensor could potentially detect the air around the pot, which would underestimate the water content. In addition, potting soil is typically high in organic matter and clay, causing the probable need for a soil-specific calibration. 

  8. No. The principle that makes these sensors work is that liquid water has a dielectric permittivity of close to 80, while soil solid particles have a dielectric permittivity of approximately 3 to 6. When liquid water freezes, its dielectric permittivity drops to 3.8, essentially making it look like soil particles to the sensor. A CS650 or CS655 installed in soil that freezes would show a rapid decline in its volumetric water content reading with corresponding temperature readings that are below 0°C. As the soil freezes down below the measurement range of the sensor, the water content values would stop changing and remain steady for as long as the soil remains frozen.  

  9. The electrical conductivity (EC) of sea water is approximately 48 dS/m. The CS655 can measure permittivity in water with EC between 0 and 8 dS/m. EC readings become extremely unstable at conductivities higher than 8 dS/m and are reported as NAN or 9999999. Because EC is part of the permittivity equation, an EC reading of NAN leads to a permittivity reading of NAN as well. Thus, the CS655 cannot provide good readings in sea water.

    With regard to sea ice, the electrical conductivity drops significantly when sea water freezes and the permittivity changes from approximately 88 down to approximately 4, as the water changes from a liquid to a solid state. With both EC and permittivity falling to levels that are within the CS655 measurement range, the sensor is expected to give valid readings in sea ice. The sensor is rugged and can withstand the cold temperatures. However, as the ice melts, there will be a point at which the electrical conductivity becomes too high to acquire a valid reading for either permittivity or electrical conductivity.

  10. Period average and electrical conductivity readings were taken with several sensors in solutions of varying permittivity and varying electrical conductivity at constant temperature. Coefficients were determined for a best fit of the data. The equation is of the form

    Ka(σ,τ) = C032 + C122 + C2*σ*τ2 + C32 + C43*τ + C52*τ + C6*σ*τ + C7*τ + C83 + C92 + C10*σ + C11

    where Ka is apparent dielectric permittivity, σ is bulk electrical conductivity (dS/m), τ is period average (μS), and C1 to C11 are constants.

Case Studies

China: Flux Cooperation
This case study discusses the integration of CPEC310 and AP200 systems to explore the theories......read more