CS655 Soil Water Content Reflectometer 12 cm

Overview

The CS655 is a multiparameter smart sensor that uses innovative techniques to monitor soil volumetric-water content, bulk electrical conductivity, and temperature. It outputs an SDI-12 signal that many of our dataloggers can measure. It has shorter rods than the CS650, for use in problem soils.

This product is supplied with a 3 m cable as standard, other lengths available to order.

Read More

Benefits and Features

  • Larger sample volume reduces error
  • Measurement corrected for effects of soil texture and electrical conductivity
  • Estimates soil-water content for a wide range of mineral soils
  • Versatile sensor—measures dielectric permittivity, bulk electrical conductivity (EC), and soil temperature

Images

Technical Description

The CS655 consists of two 12-cm-long stainless steel rods connected to a printed circuit board. The circuit board is encapsulated in epoxy and a shielded cable is attached to the circuit board for data logger connection.

The CS655 measures propagation time, signal attenuation, and temperature. Dielectric permittivity, volumetric water content, and bulk electrical conductivity are then derived from these raw values.

Measured signal attenuation is used to correct for the loss effect on reflection detection and thus propagation time measurement. This loss-effect correction allows accurate water content measurements in soils with bulk EC ≤8 dS m-1 without performing a soil-specific calibration.

Soil bulk electrical conductivity is also calculated from the attenuation measurement. A thermistor in thermal contact with a probe rod near the epoxy surface measures temperature. Horizontal installation of the sensor provides accurate soil temperature measurement at the same depth as the water content. Temperature measurement in other orientations will be that of the region near the rod entrance into the epoxy body.

Specifications

Measurements Made Soil electrical conductivity (EC), relative dielectric permittivity, volumetric water content (VWC), soil temperature
Required Equipment Measurement system
Soil Suitability Short rods are easy to install in hard soil. Suitable for soils with higher electrical conductivity.
Rods Not replaceable
Sensors Not interchangeable
Sensing Volume 3600 cm3 (~7.5 cm radius around each probe rod and 4.5 cm beyond the end of the rods)
Electromagnetic CE compliant (Meets EN61326 requirements for protection against electrostatic discharge and surge.)
Operating Temperature Range -50° to +70°C
Sensor Output SDI-12; serial RS-232
Warm-up Time 3 s
Measurement Time 3 ms to measure; 600 ms to complete SDI-12 command
Power Supply Requirements 6 to 18 Vdc (Must be able to supply 45 mA @ 12 Vdc.)
Maximum Cable Length 610 m (2000 ft) combined length for up to 25 sensors connected to the same data logger control port
Rod Spacing 32 mm (1.3 in.)
Ingress Protection Rating IP68
Rod Diameter 3.2 mm (0.13 in.)
Rod Length 120 mm (4.7 in.)
Probe Head Dimensions 85 x 63 x 18 mm (3.3 x 2.5 x 0.7 in.)
Cable Weight 35 g per m (0.38 oz per ft)
Probe Weight 240 g (8.5 oz) without cable

Current Drain

Active (3 ms)
  • 45 mA typical (@ 12 Vdc)
  • 80 mA (@ 6 Vdc)
  • 35 mA (@ 18 Vdc)
Quiescent 135 µA typical (@ 12 Vdc)

Electrical Conductivity

Range for Solution EC 0 to 8 dS/m
Range for Bulk EC 0 to 8 dS/m
Accuracy ±(5% of reading + 0.05 dS/m)
Precision 0.5% of BEC

Relative Dielectric Permittivity

Range 1 to 81
Accuracy
  • ±(3% of reading + 0.8) from 1 to 40 for solution EC ≤ 8 dS/m
  • ±2 (from 40 to 81 for solution EC ≤ 2.8 dS/m)
Precision < 0.02

Volumetric Water Content

Range 0 to 100% (with M4 command)
Water Content Accuracy
  • ±1% (with soil-specific calibration) where solution EC < 3 dS/m
  • ±3% (typical with factory VWC model) where solution EC < 10 dS/m
Precision < 0.05%

Soil Temperature

Range -50° to +70°C
Resolution 0.001°C
Accuracy
  • ±0.1°C (for typical soil temperatures [0 to 40°C] when probe body is buried in soil)
  • ±0.5°C (for full temperature range)
Precision ±0.02°C

Compatibility

Please note: The following shows notable compatibility information. It is not a comprehensive list of all compatible products.

Dataloggers

Product Compatible Note
CR1000 (retired)
CR1000X
CR300
CR3000
CR310
CR350
CR6
CR800 (retired)
CR850 (retired)

Additional Compatibility Information

RF Considerations

External RF Sources

External RF sources can affect the probe’s operation. Therefore, the probe should be located away from significant sources of RF such as ac power lines and motors.

Interprobe Interference

Multiple CS655 probes can be installed within 4 inches of each other when using the standard data logger SDI-12 “M” command. The SDI-12 “M” command allows only one probe to be enabled at a time.

Optional Installation Tool

CS650G Rod Insertion Guide Tool

The CS650G makes inserting soil-water sensors easier in dense or rocky soils. This tool can be hammered into the soil with force that might damage the sensor if the CS650G was not used. It makes pilot holes into which the rods of the sensors can then be inserted.

FAQs for

Number of FAQs related to CS655: 55

Expand AllCollapse All

  1. Yes. Keeping the sensor rods parallel during installation is especially difficult in gravel, but it can be done. Gravel has large pore spaces that drain quickly, so the water content readings will likely show rapid changes between saturation and very dry. If small changes of water content at the dry end are of interest, a soil-specific calibration may need to be performed to convert period average directly to volumetric water content.

  2. No. The principle that makes these sensors work is that liquid water has a dielectric permittivity of close to 80, while soil solid particles have a dielectric permittivity of approximately 3 to 6. When liquid water freezes, its dielectric permittivity drops to 3.8, essentially making it look like soil particles to the sensor. A CS650 or CS655 installed in soil that freezes would show a rapid decline in its volumetric water content reading with corresponding temperature readings that are below 0°C. As the soil freezes down below the measurement range of the sensor, the water content values would stop changing and remain steady for as long as the soil remains frozen.  

  3. The permittivity of saturated sediments in a stream bed is expected to read somewhere between 25 and 42, while the permittivity of water is close to 80. A CS650 or CS655 installed in saturated sediments could be used to monitor sediment erosion. If the permittivity continuously increases beyond the initial saturated reading, this is an indication that sediment around the sensor rods has eroded and been replaced with water. A calibration could be performed that relates permittivity to the depth of the rods still in the sediment. 

  4. The electrical conductivity (EC) of sea water is approximately 48 dS/m. The CS655 can measure permittivity in water with EC between 0 and 8 dS/m. EC readings become extremely unstable at conductivities higher than 8 dS/m and are reported as NAN or 9999999. Because EC is part of the permittivity equation, an EC reading of NAN leads to a permittivity reading of NAN as well. Thus, the CS655 cannot provide good readings in sea water.

    With regard to sea ice, the electrical conductivity drops significantly when sea water freezes and the permittivity changes from approximately 88 down to approximately 4, as the water changes from a liquid to a solid state. With both EC and permittivity falling to levels that are within the CS655 measurement range, the sensor is expected to give valid readings in sea ice. The sensor is rugged and can withstand the cold temperatures. However, as the ice melts, there will be a point at which the electrical conductivity becomes too high to acquire a valid reading for either permittivity or electrical conductivity.

  5. No. The abrupt permittivity change at the interface of air and saturated soil causes a different period average response than would occur with the more gradual permittivity change found when the sensor rods are completely inserted in the soil. 

    For example, if a CS650 or a CS655 was inserted halfway into a saturated soil with a volumetric water content of 0.4, the sensor would provide a different period average and permittivity reading than if the probe was fully inserted into the same soil when it had a volumetric water content of 0.2.

  6. No. The equation used to determine volumetric water content in the firmware for the CS650 and the CS655 is the Topp et al. (1980) equation, which works for a wide range of mineral soils but not necessarily for artificial soils that typically have high organic matter content and high clay content. In this type of soil, the standard equations in the firmware will overestimate water content.

    When using a CS650 or a CS655 in artificial soil, it is best to perform a soil-specific calibration. For details on performing a soil-specific calibration, refer to “The Water Content Reflectometer Method for Measuring Volumetric Water Content” section in the CS650/CS655 manual. A linear or quadratic equation that relates period average to volumetric water content will work well.

  7. The CS650 has rods that are 30 cm long, and the CS655 has rods that are 12 cm long. The difference in rod length causes some changes in specifications. For example, the CS650 is slightly more accurate in its permittivity and water content readings, but the CS655 works over a larger range of electrical conductivity. In addition, the CS650 handles a larger measurement volume and provides good accuracy in low EC (electrical conductivity) sand and sandy loam. The CS655 is typically more accurate in soil, works well over a wide range of soil textures and EC, and is easier to install because of its shorter rods.

  8. If a system has multiple CS650 or CS655 sensors, it will be necessary to connect many wires to a 12 V supply and many wires to ground. The DIN Rail Mounting Kit is useful for attaching many wires to the same source in a clean and organized way. For more details, see the 5458 DIN Rail Terminal Kit instruction manual

    Other methods of connecting several wires together, such as terminal strips or wire nuts, would also work.

  9. The volumetric water content reading is the average water content over the length of the sensor’s rods.

  10. The bulk electrical conductivity (EC) measurement is made along the sensor rods, and it is an average reading of EC over that distance at whatever depth the rods are placed.

Case Studies

Utah: Flux Stations
The Utah Geological Survey, supported by the Utah Division of Water Rights, has constructed a......read more
South Africa: Sustainable Solutions for Farms
International partnerships for sustainable innovations Improved water use in agriculture is essential to successfully adapt to......read more
China: Flux Cooperation
This case study discusses the integration of CPEC310 and AP200 systems to explore the theories......read more

Privacy Policy Update

We've updated our privacy policy.  Learn More

Cookie Consent

Update your cookie preferences.  Update Cookie Preferences